Ремонт и усиление облицовочной кирпичной кладки наружных стен зданий с применением ремонтных связей
Качественные решения
в строительстве
  • тел: +7 (495) 286-70-01
  • факс: +7 (499) 171-64-10

Ремонт и усиление облицовочной кирпичной кладки многослойных наружных стен зданий с применением гибких ремонтных связей

Проведенные исследования и анализ причин образования дефектов в многослойных наружных стенах зданий, в числе которых наибольшее распространение занимают дефекты облицовочного кирпичного слоя [1, 3, 5, 8, 9], с участием авторов были разработаны конструктивные решения по ремонту облицовочной кирпичной кладки наружных стен, обеспечивающие их дальнейшую и надежную эксплуатацию.

 Для решения этих вопросов были предложены методики применения специальных ремонтных гибких спиралевидных связей английской фирмы BIT (рис. 1), которые в сравнении с резьбовыми шпильками и арматурными стержнями обладают рядом преимуществ [10].

Последние 30 лет спиралевидные связи широко применяются на Западе. В результате их применения можно обеспечить надежное закрепление облицовки во внутреннем слое стены (рис. 2), при усилении и ремонте многослойных наружных стен, усилить существующие трещины и выполнить устройство вертикальных температурных и деформационных швов без разбора облицовочной кладки стен, выполнить усиление арочных перемычек [10].

гибкие ремонтные спиралевидные связи.jpg

Рис. 1. Гибкие ремонтные спиралевидные связи BIT-ThorHelical

Соединение слоев кирпичной кладки стены с помощью.jpg

Рис. 2. Соединение слоев кирпичной кладки стены с помощью

гибких ремонтных спиралевидных связей BIT-ThorHelical

Спиралевидные ремонтные гибкие связи изготавливаются из круглой нержавеющей проволоки, профиль которой в процессе прокатки принимает крестообразную конфигурацию с вытянутыми от центральной части плоскими ребрами, упрочненными в результате нагартовки. В результате форма связи обеспечивает простую и быструю установку посредством ударных воздействий ручным или механическим способом. Закрепление ремонтной связи происходит в результате самообразующегося механического замка между спиралью и винтообразным пазом, возникающего в процессе установки в материале основания (бетон и железобетон различных классов, включая легкие и ячеистые, керамические материалы, древесину). При установке связи в материале основания не возникает напряжений и распора (отсутствие концентраторов напряжения), что позволяет осуществлять установку вблизи края конструкции. Шаг расстановки связей и глубина заделки в основании определяются в соответствии с расчетом и на основе поверочных испытаний прочности заделки связи в материал основания [4], проведенных непосредственно на объекте.

Одно из наиболее ценных преимуществ в том, что после проведения ремонтных работ внешний облик здания практически остается без каких-либо следов ремонта, т. к. связи устанавливаются заподлицо в материал основания (кирпич, бетон, растворный шов), при этом место установки затирается мастиками с добавками пигментов, подобранными в цвет фасада.

Представленные решения являются унифицированными и требуют натурных испытаний прочности и деформативности представленных соединений, а также учета индивидуальных особенностей на каждом отдельном здании. Производство усиления возможно, как в двухслойной наружной стене, так и в трехслойной стене с внутренним утеплением [6, 7].

Применение ремонтных гибких связей рекомендуется применять в следующих случаях:

· при усилении кирпичной кладки облицовки по полю стены путем дополнительного закрепления в основании (внутреннем слое многослойной фасадной стены);

· при усилении кладки в зоне расположения горизонтальных и вертикальных трещин;

· при замене фрагментов облицовки;

· при организации вертикальных деформационных швов;

· при усилении кладки в зоне перемычек над проемами.

Рассмотрим основные варианты применения гибких спиралевидных связей.

1) Дополнительное крепление облицовочной кирпичной кладки по полю стены в основании (внутреннем слое многослойной фасадной стены).

На участках наружных стен с недостаточным количеством гибких связей предлагается закрепление кирпичной облицовки во внутреннем слое наружной стены с помощью гибких спиралевидных связей BIT-Thorhelical на химических анкерах [2, 4, 10]. Связи рекомендуется устанавливать в шахматном порядке с шагом 500×500 мм на сплошных участках стен и с шагом 250×250 мм в зонах расположения оконных и дверных проемов.

При установке связи во внутренний слой из ячеистого бетона монтаж обеспечивается с помощью ударного воздействия (рис. 3а), путем забивания связи во внутренний слой, при установке в основание из монолитного железобетона перед монтажом связи необходимо просверлить направляющее отверстие на требуемую глубину. В случае если внутренний слой выполнен из пустотелого кирпича, закрепление связи обеспечивается с помощью химических анкеров (рис. 3б) [2].


рис. а.jpg

а)

рис. б.jpg

б)



Рис. 3. Схема установки ремонтной связи:

а) в ячеистые или легкие бетоны; б) в кладку из пустотелого кирпича.

Закрепление связи в наружной облицовке из пустотелого кирпича также обеспечивается с помощью химического состава, заполняющего предварительное отверстие, необходимое для монтажа связи во внутренний слой. Заполненное химическим составом отверстие затирается «заподлицо» с поверхностью кладки.

2) Крепление облицовочной кирпичной кладки при организации вертикальных деформационных швов.

В многослойных наружных стенах при утепляющем слое из эффективного утеплителя или материала с низким коэффициентом теплопроводности наружный кирпичный облицовочный слой в зимнее время года практически не прогревается воздухом из помещений, а в летнее время наоборот, подвергается воздействию высоких температур. В результате температурных колебаний в кирпичном облицовочном слое из-за изменения длины и объема материала возникают вертикальные трещины от температурных напряжений. Вертикальные и горизонтальные температурно-деформационные швы компенсируют эти изменения и тем самым предотвращают образование трещин в кладке [1, 8, 9, 11].

Расстояние между вертикальными температурно-деформационными швами зависит от конструкции многослойной стены и определяется расчетом на температурно-влажностные воздействия. В соответствии с данными расчетами расстояния между вертикальными температурно-деформационными швами в наружном облицовочном слое наружных стен для условий г. Москвы принимаются равными 10 м.

Для устройства вертикальных температурно-деформационных швов (рис. 4) – прорезаются вертикальные швы в кирпичной облицовке шириной 20мм на высоту этажа и на глубину кладки – 120мм, также прорезаются горизонтальные растворные швы кладки на глубину 70мм, длиной 110мм через каждые 4 ряда кирпича по высоте. Прорезанные горизонтальные растворные швы заполняются химическим составом на всю толщину. Армирующие стержни сначала устанавливаются в подвижную пластиковую трубку. Выполняется монтаж стержня с пластиковой трубкой в подготовленные горизонтальные швы на расстояние 50мм от наружной поверхности кирпича, таким образом, чтобы с правой стороны вертикального шва располагалась трубка. При этом расстояние от свободного конца трубки до стержня составляет 30-40мм, что позволяет воспринимать температурные деформации при расширении участка облицовки [10.]

Схема устройства температурных деформационных швов.jpg

Рис. 4. Схема устройства температурных деформационных швов (ТДШ):

После установки армирующих стержней горизонтальные швы заполняются химическим составом и затираются кладочным раствором «заподлицо». На всю высоту вертикального шва устанавливается упругая прокладка с обжатием 2/3 от ее диаметра и наносится герметизирующий слой нетвердеющей мастики. Далее выполняется установка точечных связей в шахматном порядке по высоте шва, длина связи принимается в зависимости от глубины анкеровки во внутреннем слое стены.

3) Усиление облицовочной кладки в зоне расположения горизонтальных и вертикальных трещин.

При наличии трещин, шириной раскрытия менее 3мм, целесообразно выполнить усиление кладки на этих участках. На рис. 5 показаны конструктивные решения по усилению участков кирпичной облицовки с трещинами менее 3мм с применением армирующих стержней BIT-TCS. Выполняется прорезка горизонтальных растворных швов кладки по обе стороны трещины, глубиной 70мм, длиной 110мм через каждые 4 ряда кирпича по высоте. При этом трещина располагается в середине растворного шва. Прорезанные горизонтальные растворные швы заполняются цементно-песчаным раствором на всю толщину. Армирующие стержни устанавливаются в подготовленные горизонтальные швы на расстояние 50мм от края наружной поверхности кирпича [10].

Схема усиления трещин шириной раскрытия менее 3мм..jpg

Рис. 5. Схема усиления трещин шириной раскрытия менее 3мм.

После установки армирующих стержней горизонтальные швы заполняются цементно-песчаным раствором «заподлицо». После чего выполняется установка точечных связей диаметром Æ9мм в шахматном порядке по высоте трещины, длина связи принимается в зависимости от глубины анкеровки во внутреннем слое стены.

При наличии трещин в наружной облицовочной кладке шириной раскрытия более 3мм выполняется перекладка этого участка (рис. 6). При этом закрепление новой кладки во внутреннем слое обеспечивается с помощью гибких спиралевидных связей BIT-Thorhelical Æ9мм, расположенных в шахматном с шагом 500×500мм на сплошных участках и с шагом 250×250 мм в зонах расположения оконных и дверных проемов. На участках новой кирпичной кладки применяют кирпич с утолщенной стенкой и пустотностью не более 15%, в целях предотвращения разрушения кирпича при попадании атмосферной влаги в пустоты в осенне-весенние периоды года. Армирование перекладываемых участков кладки выполняют металлической сеткой с ячейкой 50×50мм через каждые 4 ряда по высоте [4, 10].

Схема перекладки наружной кирпичной облицовки .jpg

Рис. 6. Схема перекладки наружной кирпичной облицовки на участках разрушений и при наличии трещин шириной раскрытия более 3мм

4) На участках наружных многослойных стен с недостаточным утеплением возможна замена утеплителя только путем разбора существующей кладки кирпичной облицовки [1, 8, 11]. При монтаже утеплителя, расположенного между наружным и внутренними конструктивными слоями стен фасадов, его закрепление выполняется на поверхности внутреннего слоя с помощью тарельчатых фасадных дюбелей. Шаг расположения – 500×500 мм в шахматном порядке. После монтажа утеплителя выполняется новая кладка кирпичной облицовки по схеме, описанной выше, с применением ремонтных гибких связей BIT-Thorhelical Æ9мм.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Горшков А.С, Кнатько М.В, Рымкевич П.П. Оценка долговечности ограждающих конструкций зданий. // Стройпрофиль №3 (73). 2009.

2. Грановский А.В. Пути повышения надежности анкерных креплений Журнал «Технологии строительства» 2008 №4 (59) / 2008 с. 13-14.

3. Давидюк А.А. Анализ результатов обследования многослойных наружных стен многоэтажных каркасных зданий. // Жилищное строительство, М., №6, 2010г.

4. Ибрагимов А. М. Оптимизация количества точечных подкрепляющих связей в динамических задачах для плоского стержня (тезисы). // Тезисы докладов зонального семинара «Вопросы оптимального проектирования конструкций и расчет их рационального усиления»: / Пенз.инж.- строит. ин-т.- Пенза,1990.-С. 22.

5. Ибрагимов А.М., Федосов С.В., Гнедина Л.Ю. Проблемы трехслойных ограждающих конструкций. // Журнал//Жилищное строительство. 2012. №7 – С.9-12.

6. Король Е.А., Харькин Ю.А. Совершенствование технологии возведения энергоэффективных ограждающих конструкций в монолитном строительстве. Сборник докладов ХХ Российско-Польско-Словацкого семинара «Теоретические основы строительства». Жилина. 2011. C. 401–406.

7. Король Е.А., Харькин Ю.А. Технологическая и организационная эффективность возведения многослойных наружных стен в монолитном строительстве // Строительство и реконструкция. 2013. №6. C. 3–8.

8. Кузнецова Г. Слоистые кладки в каркасно-монолитном домостроении. // Журнал «Технологии строительства» №1, 2009.

9. Обозов В.И., Давидюк А.А., Анализ повреждений кирпичной облицовки фасадов многоэтажных каркасных зданий. //Сейсмостойкое строительство. Безопасность сооружений, М., №3, 2010.

10. Пономарев О.И., Павлова М.О. Рекомендации и технические решения по восстановлению эксплуатационной надежности облицовки из пустотелого керамического кирпича зданий с многослойными наружными стенами. // ЦНИИСК им. В.А. Кучеренко, М., 2009.

11. Яворский А.А., Киселев С.А. Актуальные задачи обеспечения надежности фасадных теплоизоляционно-отделочных систем // Вестник МГСУ. 2012. №12. С 78-84.

Назад