Экономия цемента в производстве ячеистых бетонов

В связи с неуклонным ростом цен на энергоносители, растет стоимость цемента на рынке строительных материалов, что приводит к повышению себестоимости строительства. Отрадно, что в последнее время инвесторы-застройщики и проектировщики стали чаще применять в строительстве ячеистый бетон. Действительно, преимущественно для ограждающих конструкций, этот материал, обладая отличными теплотехническими качествами, эксплуатационными достоинствами, долговечностью и достаточной прочностью, заслуживает более широкого применения в строительстве зданий любого назначения.

Применение зол в строительстве, в частности - в производстве ячеистых бетонов, позволяющее сократить расход дорогостоящего цемента, позволит, даже в условиях рыночной экономики и гонки за сверхприбылями, сократить стоимость зданий и сооружений без ухудшения качества строительства.

Исследование и промышленное внедрение технологии на производство ячеистых бетонов на основе зол ТЭС, осуществленное рядом исследовательских организаций, в том числе нашей, позволяют дать обоснованные рекомендации по широкому внедрению такой технологии. Завод по производству изделий несет затраты только на транспортировку золы и заботится об ее сухом отборе из электрофильтров и мультициклонов. Если же наладить систему использования отвальных зол, то это практически неисчерпаемый запас бесплатного сырья. Более того, использование отвальных зол позволит очистить значительные земельные площади и воспрепятствует дальнейшему загрязнению воздушных и водных бассейнов, улучшит экологическую обстановку в районах промышленных зон.

Плотность ячеистого бетона. Обратимся к параметрам композиционного материала - ячеистого золобетона. При изготовлении мелких стеновых блоков из ячеистых бетонов на цементном вяжущем по ГОСТ 21520, расход цемента при плотности материала изделий D500, D600 составляет соответственно не менее 200-250 кг на 1 м бетона. С применением зол-унос расход цемента может быть сокращен в 2 раза. При этом прочность на сжатие ячеистого бетона может быть обеспечена в пределах В1,5-В2,5, что вполне достаточно для кладки не- несущих стен при любом, даже высотном, строительстве и для самонесущих и несущих стен при возведении малоэтажных построек

Следует учесть, что при решении вопроса использования зол, в каждом отдельном случае следует провести исследование этого сырья, свойства которого зависят от степени непостоянства минералогического состава угля, нестабильности режимов работы котлов, неравномерности температурного поля в топках.

Исследования показали, что активными составляющими золы, способствующими повышению прочности бетона, являются кварц, алюмокремнеземистое стекло. Инертные компоненты - муллит и корунд, отрицательно влияют на свойства золобетона, также как частицы несгоревшего угля, количество которых не должно превышать 2% [1].

Отдельно следует упомянуть о бесцементых вяжущих на основе топливных зол. Это - золощелочные и известково-зольные композиции.

Золощелочные вяжущие на основе зол унос и зол гидроудаления получают путем затворения золы каустицированными составами (содовым плавом либо содосульфатной смесью).

Известково-зольные вяжущие можно приготовить путем затворения золы известковым молоком, которое получают добавлением в известковое тесто суперпластификатора (С-3, С-4). Такое вяжущее может быть применено в чистом виде. Однако, для повышения интенсивности твердения ячеистого бетона, рекомендуется введение добавки в виде цемента либо молотого доменного шлака в количестве 8-12% от массы золы.

Перечисленные бесцементные составы вполне пригодны для приготовления ячеистобетонных смесей с последующим естественным твердением отформованных изделий (блоки из ячеистого бетона), их пропариванием либо автоклавной обработкой [2].

Касаясь вопроса применения бесцементного вяжущего, уместно упомянуть шлаковые композиции. Так, в КТБ ЖБ были проведены работы по подбору составов ячеистых бетонов с использованием титанистых шлаков.

Такой газошлакобетон по своим прочностным свойствам соответствует нормативам. Экспериментальные подборы составов проводились на чусовском шлаке с получением бетона автоклавного твердения. Для активации титанистого шлака в состав вводились щелочные или сульфатные активаторы (в частности, двуводный гипс в количестве 2-3% от веса шлака). Такой шлакогазобетон плотностью 600 кг/м3 имеет соотношение шлакового вяжущего и песка 1:1. При указанной выше плотности был получен бетон с классом по прочности на сжатие В3,0-3,5. морозостойкость составила 50 циклов без потери прочности.

 

ЛИТЕРАТУРА:

1.      «Вопросы технологии ячеистых бетонов и конструкций из них». Под ред. А.Т. Баранова, В.В. Макаричева. М., Стройиздат, 1972 г.

2.      «Бесцементные вяжущие и бетоны на основе топливных зол».

А.В. Мироненко, Л.И. Дворкин, М. Стройиздат, 1991 г.

Поделиться: 
Читайте также:

Экономическая эффективность различных конструктивных решений железобетонных перекрытий в каркасных зданиях при расчете на прогрессирующее разрушение

Аннотация. Для рассмотрения вопроса экономической эффективности применения монолитных железобетонных перекрытий из услов...

Подбор армирования в плитах перекрытия в программных комплексах ЛИРА-САПР, SCAD, ЛИРА 10

Аннотация. Подбор арматуры в железобетонных конструкциях в программных комплексах происходит по различным алгоритмам. Эт...

Контроль прочности конструкций из высокопрочного бетона на стадии эксплуатации высотных зданий

С наступлением XXI века, в строительном комплексе многократно увеличился спрос на строительство высотных зданий с несущи...

Строительство – наше призвание.

В апреле 2017 года исполнилось 55 лет со дня создания в соответствии с постановлением Совета Министров СССР хозрасчетног...

ПРЕИМУЩЕСТВА В ПРОИЗВОДСТВЕ И ПРИМЕНЕНИИ БЛОКОВ ИЗ ЯЧЕИСТОГО БЕТОНА.

В связи с неуклонным ростом цен на энергоносители, растет стоимость цемента на рынке строительных материалов, что привод...

Ремонт и усиление облицовочной кирпичной кладки многослойных наружных стен зданий с применением гибких ремонтных связей

Проведенные исследования и анализ причин образования дефектов в многослойных наружных стенах зданий, в числе которых наи...

Технология возведения многослойных монолитных наружных стен с теплоизоляционным слоем из бетона низкой теплопроводности

Распространенные в практике современного строительства технологии возведения ограждающих конструкций, такие как навесные...

Оценка влияния теплопроводных включений на приведенное сопротивление теплопередаче наружных многослойных стен на основе легких бетонов на стекловидных заполнителях

Проведены исследования влияния теплопроводных включений на приведенное сопротивление теплопередаче наружных многослойных...